Finding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization
نویسندگان
چکیده
منابع مشابه
Finding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization
This paper is concerned with the problem of finding a low-rank solution of an arbitrary sparse linear matrix inequality (LMI). To this end, we map the sparsity of the LMI problem into a graph. We develop a theory relating the rank of the minimum-rank solution of the LMI problem to the sparsity of its underlying graph. Furthermore, we propose three graph-theoretic convex programs to obtain a low...
متن کاملOn the Low Rank Solutions for Linear Matrix Inequalities
In this paper we present a polynomial-time procedure to find a low rank solution for a system of Linear Matrix Inequalities (LMI). The existence of such a low rank solution was shown in AuYeung and Poon [1] and Barvinok [3]. In Au-Yeung and Poon’s approach, an earlier unpublished manuscript of Bohnenblust [6] played an essential role. Both proofs in [1] and [3] are nonconstructive in nature. Th...
متن کاملThe Non-convex Geometry of Low-rank Matrix Optimization
This work considers the minimization of a general convex function f(X) over the cone of positive semidefinite matrices whose optimal solution X⋆ is of low-rank. Standard first-order convex solvers require performing an eigenvalue decomposition in each iteration, severely limiting their scalability. A natural nonconvex reformulation of the problem factors the variable X into the product of a rec...
متن کاملFinding Low-rank Solutions to Matrix Problems, Efficiently and Provably
A rank-r matrix X ∈ Rm×n can be written as a product UV >, where U ∈ Rm×r andV ∈ Rn×r. One could exploit this observation in optimization: e.g., consider the minimizationof a convex function f(X) over rank-r matrices, where the scaffold of rank-r matrices is modeledvia the factorization in U and V variables. Such heuristic has been widely used before forspecific problem inst...
متن کاملSketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage
This paper concerns a fundamental class of convex matrix optimization problems. It presents the first algorithm that uses optimal storage and provably computes a lowrank approximation of a solution. In particular, when all solutions have low rank, the algorithm converges to a solution. This algorithm, SketchyCGM, modifies a standard convex optimization scheme, the conditional gradient method, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2017
ISSN: 1052-6234,1095-7189
DOI: 10.1137/14099379x